login
A248867
Decimal expansion of the smaller of the two real solutions of the equation x^(x-1) = x+1.
0
4, 7, 5, 8, 6, 0, 8, 1, 2, 3, 9, 2, 4, 5, 2, 7, 8, 4, 7, 9, 3, 1, 1, 7, 4, 6, 0, 1, 5, 4, 6, 1, 2, 1, 3, 1, 2, 3, 4, 7, 9, 0, 1, 6, 8, 1, 2, 3, 9, 7, 8, 7, 0, 7, 4, 6, 4, 6, 3, 9, 5, 0, 5, 3, 2, 8, 9, 2, 0, 6, 5, 5, 4, 2, 2, 7, 8, 7, 4, 5, 8, 0, 2, 3, 1, 4, 1, 4, 2, 6, 4, 2, 5, 5, 2, 0, 3, 3, 8, 1, 7, 9, 5, 9, 4
OFFSET
0,1
EXAMPLE
0.4758608123924527847931174601546121312347901681239787...
MATHEMATICA
digits = 105; x /. FindRoot[x^(x-1) == x+1, {x, 1/2}, WorkingPrecision -> digits+5] // RealDigits[#, 10, digits]& // First
PROG
(PARI) solve(x=1/4, 1, x^(x-1) - (x+1)) \\ Michel Marcus, Mar 04 2015
CROSSREFS
Cf. A246825.
Sequence in context: A011092 A358924 A086203 * A199441 A196566 A197566
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved