login
A248853
Decimal expansion of a second variant of the Komornik-Loreti constant.
1
2, 9, 1, 0, 0, 1, 6, 0, 5, 5, 6, 5, 5, 5, 7, 4, 6, 9, 1, 9, 8, 6, 0, 3, 6, 5, 0, 9, 6, 1, 9, 7, 9, 1, 4, 4, 5, 5, 7, 8, 2, 0, 4, 0, 3, 1, 4, 8, 7, 5, 2, 5, 0, 9, 2, 5, 2, 1, 4, 7, 5, 2, 0, 7, 7, 4, 0, 1, 1, 3, 8, 7, 5, 3, 7, 7, 7, 3, 8, 6, 4, 5, 4, 4, 3, 9, 4, 6, 5, 9, 5, 1, 6, 6, 5, 8, 2, 6, 8, 0
OFFSET
1,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.8 Prouhet-Thue-Morse Constant, p. 438.
FORMULA
The number 'q' is the unique positive solution of Sum_{n >= 1} (1-t(n))*q^-n = 1, where t(n) = A010060(n).
EXAMPLE
2.910016055655574691986036509619791445578204031487525...
MATHEMATICA
RealDigits[ q /. FindRoot[ Sum[(1 + Mod[DigitCount[n, 2, 1], 2])/q^n, {n, 1, 2000}] == 1, {q, 3}, WorkingPrecision -> 120], 10, 100] // First
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved