The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A248853 Decimal expansion of a second variant of the Komornik-Loreti constant. 1
 2, 9, 1, 0, 0, 1, 6, 0, 5, 5, 6, 5, 5, 5, 7, 4, 6, 9, 1, 9, 8, 6, 0, 3, 6, 5, 0, 9, 6, 1, 9, 7, 9, 1, 4, 4, 5, 5, 7, 8, 2, 0, 4, 0, 3, 1, 4, 8, 7, 5, 2, 5, 0, 9, 2, 5, 2, 1, 4, 7, 5, 2, 0, 7, 7, 4, 0, 1, 1, 3, 8, 7, 5, 3, 7, 7, 7, 3, 8, 6, 4, 5, 4, 4, 3, 9, 4, 6, 5, 9, 5, 1, 6, 6, 5, 8, 2, 6, 8, 0 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.8 Prouhet-Thue-Morse Constant, p. 438. LINKS Steven R. Finch, Errata and Addenda to Mathematical Constants, p. 56. Eric Weisstein's MathWorld, Komornik-Loreti Constant FORMULA The number 'q' is the unique positive solution of Sum_{n >= 1} (1-t(n))*q^-n = 1, where t(n) = A010060(n). EXAMPLE 2.910016055655574691986036509619791445578204031487525... MATHEMATICA RealDigits[ q /. FindRoot[ Sum[(1 + Mod[DigitCount[n, 2, 1], 2])/q^n, {n, 1, 2000}] == 1, {q, 3}, WorkingPrecision -> 120], 10, 100] // First CROSSREFS Cf. A010060, A055060, A248852. Sequence in context: A245217 A133768 A085333 * A272003 A128892 A187556 Adjacent sequences:  A248850 A248851 A248852 * A248854 A248855 A248856 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Mar 03 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 17:24 EDT 2021. Contains 343089 sequences. (Running on oeis4.)