This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A248852 Decimal expansion of a variant of the Komornik-Loreti constant. 1
 2, 5, 3, 5, 9, 4, 8, 0, 4, 8, 1, 4, 9, 8, 9, 3, 8, 8, 5, 1, 1, 2, 4, 6, 8, 9, 0, 4, 1, 8, 0, 8, 0, 8, 2, 0, 8, 7, 8, 3, 3, 5, 5, 2, 6, 1, 7, 0, 6, 3, 4, 4, 9, 3, 7, 6, 0, 9, 9, 6, 5, 2, 7, 5, 9, 2, 6, 0, 0, 2, 6, 9, 1, 6, 8, 8, 5, 5, 4, 1, 7, 3, 1, 1, 1, 4, 7, 6, 7, 7, 6, 3, 4, 3, 1, 8, 6, 3, 6, 1, 9, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.8 Prouhet-Thue-Morse Constant, p. 438. LINKS Steven R. Finch, Errata and Addenda to Mathematical Constants, p. 56. Steven R. Finch, Errata and Addenda to Mathematical Constants, January 22, 2016. [Cached copy, with permission of the author] Eric Weisstein's MathWorld, Komornik-Loreti Constant FORMULA The number 'q' is the unique positive solution of Sum_{n >= 1} (1-t(n)-t(n-1))*q^-n = 1, where t(n) = A010060(n). EXAMPLE 2.5359480481498938851124689041808082087833552617... MATHEMATICA RealDigits[ q /. FindRoot[ Sum[(1 + Mod[DigitCount[n, 2, 1], 2] - Mod[DigitCount[n - 1, 2, 1], 2])/q^n, {n, 1, 2000}] == 1, {q, 5/2}, WorkingPrecision -> 120], 10, 102] // First CROSSREFS Cf. A010060, A055060, A248853. Sequence in context: A224166 A216052 A021911 * A299210 A104978 A124568 Adjacent sequences:  A248849 A248850 A248851 * A248853 A248854 A248855 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Mar 03 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 23:51 EDT 2019. Contains 328379 sequences. (Running on oeis4.)