%I #25 Feb 19 2018 22:00:28
%S 1,3,1,13,1,11,71,781,1,29,4733,137257,1,15797,1806113,28531167061,1,
%T 53,264031,1803647,13993643,95593291,476218721057,25239592216021,1,
%U 10949,1749233,2699538733,19152352117,29557249587617,4722122236541789
%N Table read by rows in which row n lists divisors of (p^p-1)/(p-1) where p = prime(n).
%H Samuel S. Wagstaff, <a href="http://dx.doi.org/10.1090/S0025-5718-96-00683-7">Aurifeuillian Factorizations and the Period of the Bell Numbers</a>, Math. Comp. 65 (1996), 383-391.
%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/BellNumber.html">Bell Number</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Bell_number">Bell Number</a>
%e Table begins:
%e [1, 3],
%e [1, 13],
%e [1, 11, 71, 781],
%e [1, 29, 4733, 137257],
%e [1, 15797, 1806113, 28531167061},
%e [1, 53, 264031, 1803647, 13993643, 95593291, 476218721057, 25239592216021],
%e ...
%t Table[p = Prime[n]; Divisors[(p^p - 1)/(p - 1)], {n, 1, 10}] // Flatten
%Y Cf. A000110, A001039, A054767, A125135, A214810, A214811, A214812.
%K nonn,tabf
%O 1,2
%A _Jean-François Alcover_, Dec 03 2014