This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A248793 Sigma(n) - 1 for n such that sigma(n) - 1 is prime. 2
 2, 3, 5, 11, 7, 17, 11, 13, 23, 23, 17, 19, 41, 31, 23, 59, 41, 29, 71, 31, 47, 53, 47, 37, 59, 89, 41, 43, 83, 71, 47, 71, 97, 53, 71, 79, 89, 59, 167, 61, 103, 83, 67, 71, 73, 113, 139, 167, 79, 83, 223, 107, 131, 179, 89, 233, 167, 127, 251, 97, 101, 103 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) = corresponding values of primes p = sigma(A248792(n)) - 1, where A248792(n) = numbers n such that sigma(n) - 1 is prime. If there are at least two numbers k, h such that a(k) = a(h) = p, then p is in A158913. LINKS Michael De Vlieger, Table of n, a(n) for n = 1..10000 FORMULA a(n) = A000203(A248792(n)) - 1. If A248792(n) is a prime p, then a(n) = A248792(n) = p. MAPLE F:= proc(n) local r; r:= numtheory:-sigma(n)-1; if isprime(r) then r else NULL fi end proc: seq(F(n), n=1..1000); # Robert Israel, Nov 02 2014 MATHEMATICA a248793[n_Integer] := Cases[DivisorSigma[1, #] - 1 & /@ Range[n], _?PrimeQ]; a248793[104] (* Michael De Vlieger, Nov 07 2014 *) PROG (MAGMA) [a: n in [1..1000] | IsPrime(a) where a is SumOfDivisors(n)-1] (PARI) for(n=1, 10^3, if(isprime(sigma(n)-1), print1(sigma(n)-1, ", "))) \\ Derek Orr, Nov 01 2014 CROSSREFS Cf. A000203, A000040, A066073, A248792. Sequence in context: A130165 A083397 A067362 * A131200 A101595 A084331 Adjacent sequences:  A248790 A248791 A248792 * A248794 A248795 A248796 KEYWORD nonn,easy AUTHOR Jaroslav Krizek, Nov 01 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 23:51 EDT 2019. Contains 323597 sequences. (Running on oeis4.)