login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A248793 Sigma(n) - 1 for n such that sigma(n) - 1 is prime. 2
2, 3, 5, 11, 7, 17, 11, 13, 23, 23, 17, 19, 41, 31, 23, 59, 41, 29, 71, 31, 47, 53, 47, 37, 59, 89, 41, 43, 83, 71, 47, 71, 97, 53, 71, 79, 89, 59, 167, 61, 103, 83, 67, 71, 73, 113, 139, 167, 79, 83, 223, 107, 131, 179, 89, 233, 167, 127, 251, 97, 101, 103 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) = corresponding values of primes p = sigma(A248792(n)) - 1, where A248792(n) = numbers n such that sigma(n) - 1 is prime.

If there are at least two numbers k, h such that a(k) = a(h) = p, then p is in A158913.

LINKS

Michael De Vlieger, Table of n, a(n) for n = 1..10000

OEIS Wiki, Cyclotomic Polynomials at x=n, n! and sigma(n)

FORMULA

a(n) = A000203(A248792(n)) - 1.

If A248792(n) is a prime p, then a(n) = A248792(n) = p.

MAPLE

F:= proc(n)

local r;

r:= numtheory:-sigma(n)-1;

if isprime(r) then r else NULL fi

end proc:

seq(F(n), n=1..1000); # Robert Israel, Nov 02 2014

MATHEMATICA

a248793[n_Integer] :=

Cases[DivisorSigma[1, #] - 1 & /@ Range[n], _?PrimeQ]; a248793[104] (* Michael De Vlieger, Nov 07 2014 *)

PROG

(MAGMA) [a: n in [1..1000] | IsPrime(a) where a is SumOfDivisors(n)-1]

(PARI) for(n=1, 10^3, if(isprime(sigma(n)-1), print1(sigma(n)-1, ", "))) \\ Derek Orr, Nov 01 2014

CROSSREFS

Cf. A000203, A000040, A066073, A248792.

Sequence in context: A130165 A083397 A067362 * A131200 A101595 A084331

Adjacent sequences:  A248790 A248791 A248792 * A248794 A248795 A248796

KEYWORD

nonn,easy

AUTHOR

Jaroslav Krizek, Nov 01 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 23:51 EDT 2019. Contains 323597 sequences. (Running on oeis4.)