login
Number of different ways one can attack all squares on an n X n chessboard with n rooks.
6

%I #70 Aug 20 2024 21:56:47

%S 1,1,6,48,488,6130,92592,1642046,33514112,774478098,19996371200,

%T 570583424422,17831721894912,605743986163706,22223926472824832,

%U 875786473087350750,36893467224629215232,1654480168085245432354,78692809748219369422848,3956839189675526769415958

%N Number of different ways one can attack all squares on an n X n chessboard with n rooks.

%C Number of minimum (and minimal) dominating sets in the n X n rook graph. - _Eric W. Weisstein_, Jun 20 2017 and Aug 02 2017

%D A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, Vol. 1: Combinatorial Analysis and Probability Theory, Dover Publications, 1987, p. 77

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MinimalDominatingSet.html">Minimal Dominating Set</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MinimumDominatingSet.html">Minimum Dominating Set</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RookGraph.html">Rook Graph</a>

%F a(n) = 2*n^n - n!.

%p A248744:=n->2*n^n-n!: seq(A248744(n), n=0..25); # _Wesley Ivan Hurt_, Nov 30 2017

%t Table[2 n^n - n!, {n, 20}]

%Y Main diagonal of A290632 and of A368831.

%Y Cf. A000142, A000312.

%K nonn

%O 0,3

%A _Stephen Penrice_, Apr 09 2017