|
|
A248721
|
|
Decimal expansion of Sum_{k>=1} 1/(4^k - 1).
|
|
8
|
|
|
4, 2, 1, 0, 9, 7, 6, 8, 6, 0, 3, 3, 4, 2, 3, 7, 7, 7, 2, 9, 5, 9, 9, 0, 8, 8, 7, 9, 6, 7, 7, 1, 3, 0, 4, 8, 9, 6, 1, 4, 4, 1, 3, 3, 6, 3, 2, 4, 1, 1, 5, 4, 0, 4, 6, 0, 5, 9, 2, 0, 7, 9, 6, 7, 1, 2, 7, 7, 1, 3, 7, 0, 4, 8, 8, 7, 3, 9, 8, 0, 2, 7, 5, 1, 9, 0, 3, 6, 8, 4, 7, 5, 8, 6, 5, 0, 7, 9, 5, 3, 9, 2, 8, 4, 5
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..10000
|
|
FORMULA
|
Equals Sum_{k>=1} x^(k^2)*(1+x^k)/(1-x^k) where x = 1/4 (the Lambert series evaluated at 1/4). - Joerg Arndt, Jun 03 2020
Equals Sum_{k>=1} d(k)/4^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 22 2020
|
|
EXAMPLE
|
0.4210976860334237772959908879677130489614413363241154046059207967127713704887...
|
|
MAPLE
|
evalf(sum(1/(4^k-1), k=1..infinity), 120) # Vaclav Kotesovec, Oct 18 2014
|
|
MATHEMATICA
|
x = 1/4; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of Amarnath Murthy, see A073668 *)
|
|
PROG
|
(PARI) suminf(k=1, 1/(4^k-1)) \\ Michel Marcus, Oct 18 2014
|
|
CROSSREFS
|
Cf. A000005, A065442, A073668, A214369, A248722, A248723, A248724, A248725, A248726.
Sequence in context: A085668 A256702 A266921 * A110324 A266861 A265435
Adjacent sequences: A248718 A248719 A248720 * A248722 A248723 A248724
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
Robert G. Wilson v, Oct 12 2014
|
|
STATUS
|
approved
|
|
|
|