login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A248721 Decimal expansion of Sum_{k>=1} 1/(4^k - 1). 8
4, 2, 1, 0, 9, 7, 6, 8, 6, 0, 3, 3, 4, 2, 3, 7, 7, 7, 2, 9, 5, 9, 9, 0, 8, 8, 7, 9, 6, 7, 7, 1, 3, 0, 4, 8, 9, 6, 1, 4, 4, 1, 3, 3, 6, 3, 2, 4, 1, 1, 5, 4, 0, 4, 6, 0, 5, 9, 2, 0, 7, 9, 6, 7, 1, 2, 7, 7, 1, 3, 7, 0, 4, 8, 8, 7, 3, 9, 8, 0, 2, 7, 5, 1, 9, 0, 3, 6, 8, 4, 7, 5, 8, 6, 5, 0, 7, 9, 5, 3, 9, 2, 8, 4, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

FORMULA

Equals Sum_{k>=1} x^(k^2)*(1+x^k)/(1-x^k) where x = 1/4 (the Lambert series evaluated at 1/4). - Joerg Arndt, Jun 03 2020

Equals Sum_{k>=1} d(k)/4^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 22 2020

EXAMPLE

0.4210976860334237772959908879677130489614413363241154046059207967127713704887...

MAPLE

evalf(sum(1/(4^k-1), k=1..infinity), 120) # Vaclav Kotesovec, Oct 18 2014

MATHEMATICA

x = 1/4; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of Amarnath Murthy, see A073668 *)

PROG

(PARI) suminf(k=1, 1/(4^k-1)) \\ Michel Marcus, Oct 18 2014

CROSSREFS

Cf. A000005, A065442, A073668, A214369, A248722, A248723, A248724, A248725, A248726.

Sequence in context: A085668 A256702 A266921 * A110324 A266861 A265435

Adjacent sequences:  A248718 A248719 A248720 * A248722 A248723 A248724

KEYWORD

nonn,cons

AUTHOR

Robert G. Wilson v, Oct 12 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 09:51 EST 2021. Contains 340269 sequences. (Running on oeis4.)