login
A248660
Simple continued fraction expansion of the constant defined in A037077.
0
0, 5, 3, 10, 1, 1, 4, 1, 1, 1, 1, 9, 1, 1, 12, 2, 17, 2, 2, 1, 1, 17, 1, 6, 4, 1, 3, 3, 4, 2, 1, 262, 2, 1, 4, 1, 49, 2, 1, 9, 1, 2, 1, 1, 4, 23, 26, 6, 6, 5, 3, 3, 1, 1, 1, 144, 9, 1, 1, 5, 1, 3, 1, 1, 5, 13, 8619, 2, 1, 45, 2, 1, 1, 2, 1, 4, 5, 1, 7, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 6, 3, 1, 1, 2, 2, 7, 3, 136, 1
OFFSET
0,2
COMMENTS
A037077 is sometimes called the MRB constant.
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 450.
LINKS
Eric Weisstein's World of Mathematics, MRB Constant
MAPLE
MRB:= Sum((-1)^k*(k^(1/k)-1), k=1..infinity):
V:= evalf[150](MRB):
subs(`...`=NULL, numtheory:-cfrac(V, 100, 'quotients')); # Robert Israel, Jan 12 2015
MATHEMATICA
m = NSum[(-1)^n*(n^(1/n) - 1), {n, 1, Infinity},
WorkingPrecision -> 100, Method -> "AlternatingSigns"];
ContinuedFraction[m]
PROG
(PARI) contfrac(sumalt(x=1, (-1)^x*((x^(1/x))-1)) ) \\ Michel Marcus, Jan 12 2015
CROSSREFS
Cf. A037077 (decimal expansion).
Sequence in context: A108245 A228789 A221715 * A141620 A195140 A049829
KEYWORD
nonn,cofr
AUTHOR
Marvin Ray Burns, Jan 11 2015
STATUS
approved