The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A248600 G.f.: Sum_{n>=0} R_n(x+x*y) * x^(2*n)*y^n / (1-x-x*y)^(4*n+1) = Sum_{n>=0} Sum_{k=0..n} C(n,k)^4 * x^n*y^k, where R_n(x+x*y) equals the n-th row polynomial R_n(z) = Sum_{k=0..2*n} T(n,k)*z^k at z = x+x*y. 1
 1, 14, 8, 2, 786, 1056, 576, 96, 6, 61340, 131760, 117900, 48320, 9540, 720, 20, 5562130, 16481920, 20917120, 13847680, 5118400, 1025920, 105280, 4480, 70, 549676764, 2079579600, 3444581700, 3165926400, 1755532800, 598123008, 123656400, 14716800, 926100, 25200, 252, 57440496036 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA Leftmost border equals A050983, de Bruijn's S(4,n): T(n,0) = Sum_{k=0..2*n} (-1)^(n+k) * C(2*n,k)^4. Rightmost border equals A000984, the central binomial coefficients: T(n,2*n) = Sum_{k=0..2*n} (-1)^(n+k)* C(2*n,k)^2 = (2*n)!/(n!)^2. Row sums equal A008977(n) = (4*n)!/(n!)^4. Sum_{k=0..n} (-1)^k * T(n,k) = A002897(n) = C(2*n,n)^3. EXAMPLE Triangle begins: [1], [14, 8, 2], [786, 1056, 576, 96, 6], [61340, 131760, 117900, 48320, 9540, 720, 20], [5562130, 16481920, 20917120, 13847680, 5118400, 1025920, 105280, 4480, 70], [549676764, 2079579600, 3444581700, 3165926400, 1755532800, 598123008, 123656400, 14716800, 926100, 25200, 252], [57440496036, 264565490112, 542687590368, 640299696960, 477284304420, 233110386432, 75243589344, 15835792896, 2103157980, 165802560, 7051968, 133056, 924], [6242164112184, 33895475918304, 83073660613944, 119912994225024, 112698387745944, 72172565713248, 32111980788888, 9951304416768, 2124873478728, 305035899168, 28270554312, 1584815232, 48600552, 672672, 3432], [698300344311570, 4368053451041280, 12465205610457600, 21305587665922560, 24216302627637120, 19255941998092800, 10989839486545920, 4550117424652800, 1366687981264320, 295074717949440, 44954858108160, 4691645038080, 320878958400, 13445752320, 311351040, 3294720, 12870], ... where this triangle forms the coefficients in the series B(x,y) = 1/(1-x-x*y) + (14 + 8*(x+x*y) + 2*(x+x*y)^2) * x^2*y/(1-x-x*y)^5 + (786 + 1056*(x+x*y) + 576*(x+x*y)^2 + 96*(x+x*y)^3 + 6*(x+x*y)^4) * x^4*y^2/(1-x-x*y)^9 + (61340 + 131760*(x+x*y) + 117900*(x+x*y)^2 + 48320*(x+x*y)^3 + 9540*(x+x*y)^4 + 720*(x+x*y)^5 + 20*(x+x*y)^6) * x^6*y^3/(1-x-x*y)^13 +... such that the sum may be expressed using binomial coefficients C(n,k)^4 like so: B(x,y) =  1 + x*(1 + y) + x^2*(1 + 2^4*y + y^2) + x^3*(1 + 3^4*y + 3^4*y^2 + y^3) + x^4*(1 + 4^4*y + 6^4*y^2 + 4^4*y^3 + y^4) + x^5*(1 + 5^4*y + 10^4*y^2 + 10^4*y^3 + 5^4*y^4 + y^5) + x^6*(1 + 6^4*y + 15^4*y^2 + 20^4*y^3 + 15^4*y^4 + 6^4*y^5 + y^6) +... The central terms of the rows begin: [1, 8, 576, 48320, 5118400, 598123008, 75243589344, 9951304416768, 1366687981264320, ...]. CROSSREFS Cf. A050983, A000984, A008977, A002897, A187056, A248706. Sequence in context: A033964 A275337 A154037 * A240245 A119871 A245175 Adjacent sequences:  A248597 A248598 A248599 * A248601 A248602 A248603 KEYWORD nonn,tabf AUTHOR Paul D. Hanna, Oct 11 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 04:46 EST 2020. Contains 331335 sequences. (Running on oeis4.)