login
A248523
Initial members of prime quadruples (n, n+2, n+144, n+146).
1
5, 137, 1787, 1997, 2237, 2657, 3527, 4127, 4337, 4787, 8087, 12107, 13757, 14447, 17987, 19697, 21377, 23057, 23687, 31247, 32297, 34157, 34367, 35447, 37547, 38567, 39227, 43397, 48677, 51197, 51827, 53087, 58907, 65027, 65837
OFFSET
1,1
COMMENTS
This sequence is prime n, where there exist two twin prime pairs of (n,n+2), (n+144,n+146).
Excluding 5, this is a subsequence of each of the following: A128468 (a(n)=30*n+17), A039949 (Primes of the form 30n-13), A181605 (twin primes ending in 7).
LINKS
Eric Weisstein's World of Mathematics, Prime Quadruplet.
Eric Weisstein's World of Mathematics, Twin Primes
Wikipedia, Twin prime
EXAMPLE
For n=137, the numbers 137, 139, 281, 283, are primes.
PROG
(Python)
from sympy import isprime
for n in range(1, 10000001, 2):
..if isprime(n) and isprime(n+2) and isprime(n+144) and isprime(n+146): print(n, end=', ')
CROSSREFS
Cf. A077800 (twin primes), A128468, A039949, A181605.
Sequence in context: A142294 A279307 A265875 * A159546 A339566 A012215
KEYWORD
nonn
AUTHOR
Karl V. Keller, Jr., Jan 11 2015
STATUS
approved