

A248511


Difference between k and the least prime factor of k^2+1 where k is the nth number with k^2+1 composite.


1



1, 3, 5, 3, 7, 9, 7, 11, 13, 15, 13, 17, 19, 17, 21, 23, 25, 23, 27, 13, 29, 27, 31, 21, 33, 35, 33, 37, 39, 37, 41, 31, 43, 17, 45, 43, 47, 9, 49, 47, 51, 53, 55, 53, 57, 47, 59, 57, 61, 47, 63, 65, 63, 67, 57, 69, 67, 71, 73, 23, 75, 73, 77, 43, 79, 77, 81
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

a(n) = A134407(n)  least prime divisor of A134406(n).


LINKS

Michel Lagneau, Table of n, a(n) for n = 1..10000


EXAMPLE

a(1) = 1 because the first composite is 3^2+1 = 2*5 and 32 = 1.


MAPLE

with(numtheory):
for n from 1 to 200 do:
p:=n^2+1:x:=factorset(p):d:=nx[1]:
if type(p, prime)=false
then
printf(`%d, `, d):
else
fi:
od:


CROSSREFS

Cf. A002496, A020639, A089120, A134406, A134407.
Sequence in context: A029602 A210041 A240499 * A210191 A110465 A328915
Adjacent sequences: A248508 A248509 A248510 * A248512 A248513 A248514


KEYWORD

nonn


AUTHOR

Michel Lagneau, Oct 07 2014


STATUS

approved



