

A248501


Numbers m that are coprime to floor(m/16).


6



1, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 65, 67, 69, 71, 73, 75, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 92, 93, 94, 97, 101, 103, 107, 109, 113, 114, 115
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Definition of 'being coprime' and specialcase conventions are as in Wikipedia. In particular, when m<16 then floor(m/16)=0, and zero is coprime only to 1. The complementary sequence is A248502.


LINKS

Stanislav Sykora, Table of n, a(n) for n = 1..20000
Wikipedia, Coprime integers


FORMULA

gcd(a(n),floor(a(n)/16)) = 1.


EXAMPLE

1 is a member because gcd(1,0)=1.
2 is not, because gcd(2,0)=2.
129 is a member because 129 and floor(129/16)=8.


PROG

(PARI) a=vector(20000);
i=n=0; while(i++, if(gcd(i, i\16)==1, a[n++]=i; if(n==#a, break))); a


CROSSREFS

Cf. A248499, A248500, A248502.
Sequence in context: A262460 A190582 A004457 * A115420 A250038 A270043
Adjacent sequences: A248498 A248499 A248500 * A248502 A248503 A248504


KEYWORD

nonn,base,easy


AUTHOR

Stanislav Sykora, Oct 07 2014


STATUS

approved



