login
A248482
Consider two consecutive primes {p,q} such that P=2p+q and Q=2q+p are both prime. The sequence gives primes P.
2
11, 17, 43, 179, 313, 353, 673, 733, 809, 1021, 1481, 2333, 2371, 2473, 2741, 2767, 4721, 4931, 5179, 5647, 5849, 6277, 7283, 7573, 8273, 8863, 8941, 8999, 9041, 9437, 10093, 10723, 11239, 12703, 13099, 13999, 14737, 17383, 17729, 18671, 19079, 20389, 21143, 22531
OFFSET
1,1
EXAMPLE
a(1)=11 because p=3, q=5 and P=11 and Q=13 are both prime.
a(3)=43 because p=13, q=17 and P=43 and Q=47 are both prime.
MATHEMATICA
Select[Table[If[PrimeQ[2*Prime[j-1] + Prime[j]] && PrimeQ[Prime[j-1] + 2*Prime[j]], 2*Prime[j-1] + Prime[j], 0], {j, 2, 2000}], #!=0&] (* Vaclav Kotesovec, Oct 08 2014 *)
2#[[1]]+#[[2]]&/@Select[Partition[Prime[Range[1000]], 2, 1], AllTrue[ {2#[[1]]+ #[[2]], 2#[[2]]+#[[1]]}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jun 28 2017 *)
PROG
(PARI) listP(nn) = {forprime(p=2, nn, q = nextprime(p+1); if (isprime(P=2*p+q) && isprime(2*q+p), print1(P, ", ")); ); } \\ Michel Marcus, Oct 07 2014
CROSSREFS
Cf. A181848(primes p), A248480(primes q), A248483(primes Q).
Sequence in context: A190800 A191456 A146036 * A267772 A046122 A217064
KEYWORD
nonn
AUTHOR
Zak Seidov, Oct 07 2014
STATUS
approved