OFFSET
1,1
COMMENTS
Row 3 of A248461
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..210
FORMULA
Empirical: a(n) = a(n-1) +a(n-3) -2*a(n-7) +a(n-8) -2*a(n-9) +a(n-10) -a(n-11) +2*a(n-12) +2*a(n-15) -a(n-16) +a(n-17) -2*a(n-18) +a(n-19) -2*a(n-20) +a(n-24) +a(n-26) -a(n-27)
Also a polynomial of degree 5 plus a quadratic quasipolynomial with period 840, the first 12 being:
Empirical for n mod 840 = 0: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (197/30)*n^2 + (51/5)*n
Empirical for n mod 840 = 1: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (31/15)*n^2 + (66/5)*n - (33/10)
Empirical for n mod 840 = 2: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (197/30)*n^2 + (113/15)*n - (152/15)
Empirical for n mod 840 = 3: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (31/15)*n^2 + (26/5)*n - (1/2)
Empirical for n mod 840 = 4: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (197/30)*n^2 + (51/5)*n - (12/5)
Empirical for n mod 840 = 5: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (31/15)*n^2 + (158/15)*n + (1/6)
Empirical for n mod 840 = 6: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (197/30)*n^2 + (51/5)*n - (24/5)
Empirical for n mod 840 = 7: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (31/15)*n^2 + (26/5)*n + (67/10)
Empirical for n mod 840 = 8: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (197/30)*n^2 + (113/15)*n - (4/3)
Empirical for n mod 840 = 9: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (31/15)*n^2 + (66/5)*n - (9/10)
Empirical for n mod 840 = 10: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (197/30)*n^2 + (51/5)*n - 8
Empirical for n mod 840 = 11: a(n) = n^5 + (1/2)*n^4 + (20/3)*n^3 - (31/15)*n^2 + (38/15)*n + (41/30)
EXAMPLE
Some solutions for n=6
..2....2....3....1....4....2....2....1....2....4....0....1....3....3....6....5
..3....5....2....3....1....6....6....4....0....4....2....6....6....0....0....4
..5....6....0....1....4....1....2....4....0....1....5....5....6....5....2....4
..2....0....5....6....4....6....5....0....3....5....3....0....2....5....2....0
..4....5....3....2....1....4....2....6....5....5....6....5....2....6....3....5
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 06 2014
STATUS
approved