login
A248448
T(n,k)=Number of length n+5 0..k arrays with no three disjoint pairs in any consecutive six terms having the same sum
15
42, 546, 62, 3372, 1272, 92, 13500, 11436, 3000, 136, 41670, 59480, 39072, 7116, 200, 107502, 226410, 263212, 133872, 16932, 292, 243576, 694632, 1233820, 1166348, 459276, 40326, 422, 499992, 1824272, 4497352, 6729772, 5171484, 1576148, 95972
OFFSET
1,1
COMMENTS
Table starts
...42.....546......3372......13500........41670........107502.........243576
...62....1272.....11436......59480.......226410........694632........1824272
...92....3000.....39072.....263212......1233820.......4497352.......13682340
..136....7116....133872....1166348......6729772......29135376......102662460
..200...16932....459276....5171484.....36721992.....188800400......770455736
..292...40326...1576148...22934730....200399588....1223547300.....5782408256
..422...95972...5407584..101700684...1093511486....7928947808....43396532796
..612..228582..18555016..450991386...5966952566...51381959992...325686928754
..900..544916..63680912.2000009808..32560374732..332972844392..2444257395164
.1328.1299898.218584848.8869712066.177677103884.2157790887982.18344026931670
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 16]
Empirical for row n:
n=1: a(n) = 6*a(n-1) -14*a(n-2) +14*a(n-3) -14*a(n-5) +14*a(n-6) -6*a(n-7) +a(n-8); also polynomial of degree 6 plus a constant quasipolynomial with period 2
n=2: [order 16; also a polynomial of degree 7 plus a linear quasipolynomial with period 12]
EXAMPLE
Some solutions for n=3 k=4
..0....0....1....0....0....1....0....0....1....0....0....0....0....1....1....1
..3....2....0....3....1....3....0....3....1....2....3....0....1....1....3....2
..4....2....3....0....0....1....2....3....2....1....2....4....2....2....2....3
..2....4....3....0....2....3....2....0....0....0....2....0....3....3....1....0
..0....0....2....4....0....3....4....2....0....1....3....2....0....2....0....1
..0....1....2....2....1....2....3....0....1....0....3....1....4....4....3....3
..3....0....1....3....3....2....2....3....4....3....0....0....3....2....1....3
..2....1....0....1....2....0....2....0....4....4....0....2....0....2....3....0
CROSSREFS
Sequence in context: A163727 A160065 A196671 * A248449 A245874 A293096
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Oct 06 2014
STATUS
approved