OFFSET
0,3
COMMENTS
Also: numbers not congruent to 8 (mod 9), or numbers whose base-9 expansion does not end in the digit "8".
Paz proves that for all n>0 there is a prime in Breusch's interval [n; a(n+3)], cf A248371.
LINKS
G. A. Paz, On the Interval [n; 2n]: Primes, Composites and Perfect Powers, Gen. Math. Notes 15 no. 1 (2013), 1-15.
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,1,-1).
FORMULA
G.f.: x*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + 2*x^7) / ((1 + x)*(1 - x)^2*(1 + x^2)*(1 + x^4)). [Bruno Berselli, Oct 06 2014]
a(n) = n + floor(n/8) = a(n-1) + a(n-8) - a(n-9). [Bruno Berselli, Oct 06 2014]
a(n) = A168183(n+1) - 1. - Philippe Deléham, Dec 05 2013
MATHEMATICA
Table[Floor[9 n/8], {n, 0, 90}] (* Bruno Berselli, Oct 06 2014 *)
PROG
(PARI) a(n)=9*n\8
(Magma) [Floor(9*n/8): n in [0..90]]; // Bruno Berselli, Oct 06 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Oct 05 2014
STATUS
approved