This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A248345 Signed version of A094953. 3
 1, -1, 2, 2, -4, 3, -2, 8, -9, 4, 3, -12, 21, -16, 5, -3, 18, -39, 44, -25, 6, 4, -24, 66, -96, 80, -36, 7, -4, 32, -102, 184, -200, 132, -49, 8, 5, -40, 150, -320, 430, -372, 203, -64, 9, -5, 50, -210, 520, -830, 888, -637, 296, -81, 10, 6, -60, 285, -800, 1480, -1884, 1673, -1024, 414, -100, 11 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS This is the transformation of the polynomial 1 + 2x + 3x^2 + 4x^3 + ... + n*x^(n-1)+(n+1)*x^n to the polynomial A_0*(x+1)^0 + A_1*(x+1)^1 + A_2*(x+1)^2 + ... + A_n*(x+1)^n. This sequence gives A_0, ... A_n as the entries in the n-th row of this triangle, starting at n = 0. LINKS FORMULA Rows sum to 1. T(n,n) = n for n >= 0. T(n,n-1) = -n^2 for n >= 1. T(n,2) = A007518(n)*(-1)^n for n >= 2. T(n,1) = A007590(n+1)*(-1)^(n+1) for n >= 1. T(n,0) = A001057(n+1) for n >= 0. EXAMPLE 1; -1,  2; 2,  -4,    3; -2,  8,   -9,    4; 3, -12,   21,  -16,    5; -3, 18,  -39,   44,  -25,    6; 4, -24,   66,  -96,   80,  -36,    7; -4, 32, -102,  184, -200,  132,  -49,   8; 5, -40,  150, -320,  430, -372,  203, -64,   9; -5, 50, -210,  520, -830,  888, -637, 296, -81, 10 PROG (PARI) T(n, k)=(k+1)*sum(i=0, n-k, (-1)^i*binomial(i+k+1, k+1)) for(n=0, 15, for(k=0, n, print1(T(n, k), ", "))) CROSSREFS Cf. A007518, A007590, A001057, A094953. Sequence in context: A112154 A112155 A209749 * A094953 A122687 A002948 Adjacent sequences:  A248342 A248343 A248344 * A248346 A248347 A248348 KEYWORD sign,tabl,easy AUTHOR Derek Orr, Oct 30 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 16 06:38 EDT 2019. Contains 327090 sequences. (Running on oeis4.)