%I #11 Oct 02 2024 09:15:10
%S 7,2,5,22,1953,8757320,200363231947338,251498638872293007053426171621,
%T 66042587251601360877390227281939923689168739166891158256860,
%U 4700611214316865673372383919277278315652700484280159329574134292008149533706899635266740297016908819979207833123794661
%N Egyptian fraction representation of sqrt(60) (A010513) using a greedy function.
%t Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 60]]
%Y Cf. A010513 (decimal expansion), A040052 (continued fraction).
%Y Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
%Y Egyptian fraction representations of the cube roots: A129702, A132480-A132574.
%K nonn
%O 0,1
%A _Robert G. Wilson v_, Oct 04 2014