%I #6 Oct 20 2019 21:24:33
%S 5,6,34,13516,202119099,64783216365098195,
%T 22100984125756663557825370106132649,
%U 666714143657173655990633057343413567220367208291412102910376204532308
%N Egyptian fraction representation of sqrt(27) (A010482) using a greedy function.
%t Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 27]]
%Y Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
%Y Egyptian fraction representations of the cube roots: A129702, A132480-A132574.
%K nonn
%O 0,1
%A _Robert G. Wilson v_, Oct 04 2014