%I #6 Oct 20 2019 12:32:45
%S 3,2,5,25,604,568947,524109421430,456412587974094208278324,
%T 217923503007735559214372603301923745039374715408,
%U 53829867761684622028477476025136774072620218179339699337234480313626745601639126196448075512614
%N Egyptian fraction representation of sqrt(14) (A010471) using a greedy function.
%t Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 14]]
%Y Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
%Y Egyptian fraction representations of the cube roots: A129702, A132480-A132574.
%K nonn
%O 0,1
%A _Robert G. Wilson v_, Oct 04 2014