%I #6 Oct 20 2019 12:32:00
%S 3,3,8,174,47270,3322246062,13585339584457844199,
%T 266643312158266377656241697792775202384,
%U 221110316712057155914682414678073188192934894445719392090279403577596961625414
%N Egyptian fraction representation of sqrt(12) (A010469) using a greedy function.
%t Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter >
%t 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 12]]
%Y Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
%Y Egyptian fraction representations of the cube roots: A129702, A132480-A132574.
%K nonn
%O 0,1
%A _Robert G. Wilson v_, Oct 04 2014