login
A248226
a(n) = 10^n - 3^n.
1
0, 7, 91, 973, 9919, 99757, 999271, 9997813, 99993439, 999980317, 9999940951, 99999822853, 999999468559, 9999998405677, 99999995217031, 999999985651093, 9999999956953279, 99999999870859837, 999999999612579511, 9999999998837738533, 99999999996513215599
OFFSET
0,2
FORMULA
G.f.: 7*x/((1 - 3*x)*(1 - 10*x)).
a(n) = 13*a(n-1) - 30*a(n-2).
a(n) = A011557(n) - A000244(n).
a(2*n) mod 10^n = A016189(n). - Michel Marcus, Oct 05 2014
a(n+1) = 7*A016145(n). - Bruno Berselli, Oct 05 2014
MATHEMATICA
Table[10^n - 3^n, {n, 0, 25}] (* or *) CoefficientList[Series[(7 x)/((1 - 3 x) (1 - 10 x)), {x, 0, 30}], x]
LinearRecurrence[{13, -30}, {0, 7}, 30] (* Harvey P. Dale, Jul 10 2021 *)
PROG
(Magma) [10^n-3^n: n in [0..30]];
(PARI) a(n) = 10^n - 3^n \\ Michel Marcus, Oct 05 2014
CROSSREFS
Cf. similar sequences listed in A248225.
Sequence in context: A181475 A374094 A249640 * A165230 A346939 A156712
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Oct 05 2014
STATUS
approved