

A248224


Decimal expansion of (43/11)*(4*Pi^3/45)^(3/2).


1



1, 7, 8, 8, 6, 3, 3, 7, 1, 9, 5, 7, 3, 5, 6, 8, 6, 7, 3, 9, 5, 0, 2, 3, 6, 1, 2, 3, 2, 2, 9, 6, 0, 6, 9, 6, 0, 9, 5, 6, 8, 9, 0, 3, 5, 1, 8, 2, 4, 0, 3, 7, 2, 4, 5, 5, 4, 4, 0, 3, 2, 8, 1, 2, 5, 9, 1, 0, 0, 1, 5, 8, 3, 4, 0, 9, 6, 8, 8, 9, 1, 2, 9, 7, 1, 5, 0, 5, 9, 0, 8, 6, 3, 3, 3, 5, 3, 9, 3, 6, 6, 5, 8, 3, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,2


COMMENTS

The constant plays a role in the horizon problem.
The early universe could contain at least (this constant)/M(p)^3*10^139 ~ 10^83 "separate regions that are causally disconnected", M(p) is the Planck mass energy ~ 1.22*10^19 GeV (see Alan H. Guth paper).


REFERENCES

A. J. Kox and Jean Eisenstaedt, The Universe of General Relativity (Einstein Studies), Birkhauser, 2005, pp. 241244.


LINKS

Table of n, a(n) for n=2..106.
Alan H. Guth, Inflationary universe: A possible solution to the horizon and flatness problems, Physical Review D 23 (2), pp. 347356.
Wikipedia, Horizon problem


FORMULA

g(*)(T(gamma)) * A248223^(3/2), where g(*)(T(gamma)) = 2 + 7/8*6*4/11 = 43/11.


EXAMPLE

17.88633719573568673950236123229606960956890351824037245544032812591001...


MATHEMATICA

RealDigits[N[43/11*(4/45*Pi^3)^(3/2), 105]][[1]]


PROG

(MAGMA) n:=43/11*(4/45*Pi(RealField(104))^3)^(3/2); Reverse(Intseq(Floor(10^103*n)));
(PARI) default(realprecision, 105); x=43/110*(4/45*Pi^3)^(3/2); for(n=1, 105, d=floor(x); x=(xd)*10; print1(d, ", "));


CROSSREFS

Cf. A236258, A248223.
Sequence in context: A197810 A085361 A256781 * A092290 A156571 A099987
Adjacent sequences: A248221 A248222 A248223 * A248225 A248226 A248227


KEYWORD

nonn,cons,easy


AUTHOR

Arkadiusz Wesolowski, Oct 04 2014


STATUS

approved



