login
A248210
Zeroless numbers k (numbers in A052382) such that k - DigitProduct(k) contains the same distinct digits as k.
1
293, 362, 436, 545, 554, 631, 653, 749, 763, 891, 958, 965, 1293, 1362, 1436, 1545, 1554, 1631, 1653, 1749, 1763, 1891, 1958, 1965, 2193, 2331, 2491, 2536, 2556, 2565, 2693, 2917, 2954, 2963, 3162, 3231, 3325, 3382, 3529, 3534, 3635, 3651, 4291, 4515, 4533, 4551, 4634, 4935, 4952, 4971
OFFSET
1,1
COMMENTS
Numbers that contain zeros trivially have this property. - Tanya Khovanova, Jul 19 2021
EXAMPLE
631 - 6*3*1 = 613 contains the same digits as 631. So 631 is a term of this sequence.
MATHEMATICA
Select[Range@5000, (d=IntegerDigits@#; FreeQ[d, 0]&&Union@IntegerDigits[#-Times@@d]==Union@d)&] (* Giorgos Kalogeropoulos, Jul 20 2021 *)
PROG
(PARI)
for(n=1, 10^4, d=digits(n); p=prod(i=1, #d, d[i]); if(p && vecsort(digits(n), , 8)==vecsort(digits(n-p), , 8), print1(n, ", ")))
(Python)
from math import prod
def ok(n):
s = str(n)
return '0' not in s and set(str(n-prod(int(d) for d in s))) == set(s)
print(list(filter(ok, range(5000)))) # Michael S. Branicky, Jul 18 2021
CROSSREFS
Cf. A052382 (zeroless numbers), A007954 (digit product).
Cf. A247888 (similar, with n + digit product).
Sequence in context: A202888 A217181 A155140 * A142284 A245583 A252409
KEYWORD
nonn,easy,base
AUTHOR
Derek Orr, Oct 03 2014
STATUS
approved