login
A248203
Numbers n such that n-1, n, and n+1 are the product of 4 distinct primes.
8
203434, 214490, 225070, 258014, 294594, 313054, 315722, 352886, 389390, 409354, 418846, 421630, 452354, 464386, 478906, 485134, 500906, 508046, 508990, 526030, 528410, 538746, 542270, 542794, 548302, 556870, 559690, 569066, 571234, 579886, 582406, 588730
OFFSET
1,1
COMMENTS
A subsequence of A066509 and offset by one from A176167.
LINKS
FORMULA
a(n) = A176167(n)+1.
EXAMPLE
203433 factors as 3*19*43*83, 203434 factors as 2*7*11*1321 and 203435 factors as 5*23*29*61; and with no similar smaller trio a(1)=203434. [Corrected by James G. Merickel, Jul 23 2015]
MATHEMATICA
f1[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1}; f2[n_]:=Max[Last/@FactorInteger[n]]; lst={}; Do[If[f1[n]&&f1[n + 1]&&f1[n+2], AppendTo[lst, n + 1]], {n, 2 8!, 4 9!}]; lst (* Vincenzo Librandi, Aug 02 2015 *)
PROG
(PARI)
{
\\ Initialized at A093550(4) (3rd term there, w/offset=2). If this \\
\\ program is to run from a different starting value of n, it must not \\
\\ be congruent to -1, 0 or 1 modulo 9 (in addition to being congruent \\
\\ to 2 modulo 4), and either u or the vector s needs to be brought into \\
\\ agreement. \\
n=203434; s=[4, 4, 8, 8, 8, 4]; u=1;
while(1,
if(issquarefree(n) &&
issquarefree(n-1) &&
issquarefree(n+1) &&
omega(n)==4 &&
omega(n-1)==4 &&
omega(n+1)==4,
print1(n, ", "));
n+=s[u]; if(u==6, u=1, u++))
} \\ James G. Merickel, Jul 23 2015
(PARI) is_ok(n)=(n>1&&omega(n-1)==4&&omega(n)==4&&omega(n+1)==4&&issquarefree(n-1)&&issquarefree(n)&&issquarefree(n+1));
first(m)=my(v=vector(m), i, t=2); for(i=1, m, while(!is_ok(t), t++); v[i]=t; t++); v; /* Anders Hellström, Aug 01 2015 */
KEYWORD
nonn
AUTHOR
James G. Merickel, Oct 28 2014
STATUS
approved