OFFSET
1,2
COMMENTS
Conjecture: a(n) exists for any n > 0. Moreover, a(n) < n*(n-1) if n > 2.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Zhi-Wei Sun, A new theorem on the prime-counting function, arXiv:1409.5685, 2014.
EXAMPLE
a(3) = 4 since 3 + 4 = 7 divides prime(prime(3)) + prime(prime(4)) = prime(5) + prime(7) = 11 + 17 = 28.
a(2479) = 3386154 since 2479 + 3386154 = 3388633 divides prime(prime(2479)) + prime(prime(3386154)) = prime(22111) + prime(56851657) = 250963 + 1124775193 = 1125026156 = 332*3388633.
MATHEMATICA
Do[m=1; Label[aa]; If[Mod[Prime[Prime[m]]+Prime[Prime[n]], m+n]==0, Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa]; Label[bb]; Continue, {n, 1, 60}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 03 2014
STATUS
approved