login
A248168
G.f.: 1/sqrt((1-3*x)*(1-11*x)).
3
1, 7, 57, 511, 4849, 47607, 477609, 4862319, 50026977, 518839783, 5414767897, 56795795679, 598213529809, 6322787125207, 67026654455433, 712352213507151, 7587639773475777, 80977812878889927, 865716569022673401, 9269461606674304959, 99387936492243451569, 1066975862517563301303
OFFSET
0,2
LINKS
Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
FORMULA
a(n) equals the central coefficient in (1 + 7*x + 4*x^2)^n, n>=0.
a(n) = Sum_{k=0..n} 3^(n-k) * 2^k * C(n,k) * C(2*k,k).
a(n) = Sum_{k=0..n} 11^(n-k) * (-2)^k * C(n,k) * C(2*k,k). - Paul D. Hanna, Apr 20 2019
a(n)^2 = A248167(n), which gives the coefficients in 1 / AGM(1-3*11*x, sqrt((1-3^2*x)*(1-11^2*x))).
Equals the binomial transform of 2^n*A026375(n).
Equals the second binomial transform of A084771.
Equals the third binomial transform of A059304(n) = 2^n*(2*n)!/(n!)^2.
a(n) ~ 11^(n+1/2)/(2*sqrt(2*Pi*n)). - Vaclav Kotesovec, Oct 03 2014
D-finite with recurrence: n*a(n) +7*(-2*n+1)*a(n-1) +33*(n-1)*a(n-2)=0. [Belbachir]
EXAMPLE
G.f.: A(x) = 1 + 7*x + 57*x^2 + 511*x^3 + 4849*x^4 + 47607*x^5 +...
where A(x)^2 = 1/((1-3*x)*(1-11*x)):
A(x)^2 = 1 + 14*x + 163*x^2 + 1820*x^3 + 20101*x^4 + 221354*x^5 +...
MATHEMATICA
CoefficientList[Series[1/Sqrt[(1-3*x)*(1-11*x)], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 03 2014 *)
PROG
(PARI) {a(n)=polcoeff( 1 / sqrt((1-3*x)*(1-11*x) +x*O(x^n)), n) }
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n)=polcoeff( (1 + 7*x + 4*x^2 +x*O(x^n))^n, n) }
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n)=sum(k=0, n, 3^(n-k)*2^k*binomial(n, k)*binomial(2*k, k))}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A142990 A202250 A147689 * A176733 A062192 A122649
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 03 2014
STATUS
approved