login
A248127
Numbers whose squares became cubes if some digit is prepended, inserted or appended.
1
2, 4, 5, 10, 31, 72, 75, 80, 162, 270, 383, 640, 1250, 2000, 2160, 3430, 4000, 5000, 5120, 7290, 10000, 13310, 17280, 21970, 27440, 28875, 31000, 33750, 40960, 49130, 58320, 68590, 72000, 75000, 80000, 92610
OFFSET
1,1
EXAMPLE
If n = 10 then n^2 = 100 and if we append a 0 we have (1000)^1/3 = 10.
If n = 31 then n^2 = 961 and if we insert a 2 we have (9261)^1/3 = 21.
Again, if n = 112625 then n^2 = 12684390625 and if we insert an 8 we have (126884390625)^1/3 = 5025.
MAPLE
with(numtheory): P:=proc(q) local a, b, c, j, k, ok, n;
for n from 1 to q do a:=n^2; c:=ilog10(a)+1; ok:=1; for k from 0 to ilog10(a)+1 do
if ok=1 then for j from 0 to 9 do if not (k=c and j=0) then b:=trunc(a/10^k)*10^(k+1)+j*10^k+(a mod 10^k);
if b=trunc(evalf((b)^(1/3)))^3 then print(n); ok:=0; break; fi; fi; od; fi; od; od; end: P(10^9);
MATHEMATICA
f[n_] := ! MissingQ@SelectFirst[Rest@Flatten[Outer[Insert[IntegerDigits[n^2], #2, #1] &, Range[IntegerLength[n^2] + 1], Range[0, 9]], 1], IntegerQ@CubeRoot@FromDigits@# &];
Select[Range[100], f] (* Davin Park, Dec 30 2016 *)
CROSSREFS
Sequence in context: A110789 A125952 A337661 * A258253 A177244 A367368
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Nov 10 2014
EXTENSIONS
Corrected by Davin Park, Dec 30 2016
STATUS
approved