login
A248105
Positions of 1,0,1 in the Thue-Morse sequence (A010060).
2
3, 12, 15, 20, 27, 36, 43, 48, 51, 60, 63, 68, 75, 80, 83, 92, 99, 108, 111, 116, 123, 132, 139, 144, 147, 156, 163, 172, 175, 180, 187, 192, 195, 204, 207, 212, 219, 228, 235, 240, 243, 252, 255, 260, 267, 272, 275, 284, 291, 300, 303, 308, 315, 320, 323
OFFSET
1,1
COMMENTS
Every positive integer lies in exactly one of these six sequences:
A248056 (positions of 0,0,1)
A248104 (positions of 0,1,0)
A157970 (positions of 1,0,0)
A157971 (positions of 0,1,1)
A248105 (positions of 1,0,1)
A248057 (positions of 1,1,0)
LINKS
EXAMPLE
Thue-Morse sequence: 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,..., so that a(1) = 3 and a(2) = 12.
MATHEMATICA
z = 600; u = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {1, 0}}] &, {0}, 13]; v = Rest[u]; w = Rest[v]; t1 = Table[If[u[[n]] == 0 && v[[n]] == 0 && w[[n]] == 1, 1, 0], {n, 1, z}];
t2 = Table[If[u[[n]] == 0 && v[[n]] == 1 && w[[n]] == 0, 1, 0], {n, 1, z}];
t3 = Table[If[u[[n]] == 1 && v[[n]] == 0 && w[[n]] == 0, 1, 0], {n, 1, z}];
t4 = Table[If[u[[n]] == 0 && v[[n]] == 1 && w[[n]] == 1, 1, 0], {n, 1, z}];
t5 = Table[If[u[[n]] == 1 && v[[n]] == 0 && w[[n]] == 1, 1, 0], {n, 1, z}];
t6 = Table[If[u[[n]] == 1 && v[[n]] == 1 && w[[n]] == 0, 1, 0], {n, 1, z}];
Flatten[Position[t1, 1]] (* A248056 *)
Flatten[Position[t2, 1]] (* A248104 *)
Flatten[Position[t3, 1]] (* A157970 *)
Flatten[Position[t4, 1]] (* A157971 *)
Flatten[Position[t5, 1]] (* A248105 *)
Flatten[Position[t6, 1]] (* A248057 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 01 2014
STATUS
approved