login
A248060
Sums over successive antidiagonals of A248059.
6
0, 0, 1, 14, 89, 416, 1526, 4740, 12898, 31680, 71527, 150722, 299571, 566592, 1026524, 1791528, 3025188, 4961280, 7926621, 12370710, 18901069, 28327904, 41716466, 60451820, 86313734, 121567680, 169068835, 232386570, 315945319, 425191040, 566777976, 748786896
OFFSET
1,4
LINKS
Christopher Hunt Gribble, Table of n, a(n) for n = 1..10000
FORMULA
Empirically, a(n) = (2*n^9 + 18*n^8 + 18*n^7 - 210*n^6 + 588*n^5 + 672*n^4 - 3803*n^3 - 1425*n^2 + 3195*n + 945 + 315*n^3*(-1)^n + 945*n^2*(-1)^n - 315*n*(-1)^n - 945*(-1)^n)/120960.
Empirical g.f.: x^3*(x^8-4*x^6+8*x^5+26*x^4+40*x^3+16*x^2+8*x+1) / ((x-1)^10*(x+1)^4). - Colin Barker, Apr 08 2015
EXAMPLE
a(1..9) are formed as follows:
. Antidiagonals of A248059 n a(n)
. 0 1 0
. 0 0 2 0
. 0 1 0 3 1
. 1 6 6 1 4 14
. 3 22 39 22 3 5 89
. 9 60 139 139 60 9 6 416
. 19 135 371 476 371 135 19 7 1526
. 38 266 813 1253 1253 813 266 38 8 4740
.66 476 1574 2706 3254 2706 1574 476 66 9 12898
MAPLE
b := proc (n::integer, k::integer)::integer;
(4*k^4*n^4 - 24*k^3*n^3 + 2*k^4 + 12*k^3*n + 80*k^2*n^2 +
12*k*n^3 + 2*n^4 - 24*k^3 - 24*k^2*n - 24*k*n^2 - 24*n^3 +
40*k^2 - 102*k*n + 40*n^2 + 9 + (- 2*k^4 - 12*k^3*n + 24*k^3 +
24*k^2*n - 40*k^2 + 6*k*n - 9)*(-1)^n + (- 12*k*n^3 - 2*n^4 +
24*k*n^2 + 24*n^3 + 6*k*n - 40*n^2 - 9)*(-1)^k +
(- 6*k*n + 9)*(-1)^k*(-1)^n)/384
end proc;
for j to 40 do a := 0;
for k from j by -1 to 1 do
n := j-k+1;
a := a+b(n, k);
end do;
printf("%d, ", a):
end do:
CROSSREFS
Cf. A248059.
Sequence in context: A202785 A255535 A034544 * A186257 A241305 A195267
KEYWORD
nonn
AUTHOR
EXTENSIONS
Terms corrected and extended by Christopher Hunt Gribble, Apr 06 2015
STATUS
approved