login
A248035
Least positive integer m such that m + n divides phi(m)^2 + phi(n)^2, where phi(.) is Euler's totient function.
4
1, 3, 2, 1, 15, 14, 3, 8, 9, 30, 30, 14, 7, 6, 5, 9, 3, 8, 55, 60, 9, 4, 83, 28, 25, 71, 9, 1, 24, 4, 43, 32, 1523, 30, 13, 9, 35, 3, 21, 24, 17, 18, 7, 8, 99, 166, 5, 4, 3, 32, 205, 6, 36, 18, 19, 19, 40, 78, 9, 8
OFFSET
1,2
COMMENTS
Conjecture: a(n) exists for any n > 0. Moreover, a(n) <= n^2 except for n = 33.
LINKS
Zhi-Wei Sun, A new theorem on the prime-counting function, arXiv:1409.5685, 2014.
EXAMPLE
a(5) = 15 since 15 + 5 = 20 divides phi(15)^2 + phi(5)^2 = 8^2 + 4^2 = 80.
a(33) = 1523 since 1523 + 33 = 1556 divides phi(1523)^2 + phi(33)^2 = 1522^2 + 20^2 = 2316884 = 1489*1556.
MATHEMATICA
Do[m=1; Label[aa]; If[Mod[EulerPhi[m]^2+EulerPhi[n]^2, m+n]==0, Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa]; Label[bb]; Continue, {n, 1, 60}]
lpim[n_]:=Module[{m=1, p2=EulerPhi[n]^2}, While[Mod[p2+EulerPhi[m]^2, m+n]!=0, m++]; m]; Array[lpim, 60] (* Harvey P. Dale, Nov 19 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Sep 29 2014
STATUS
approved