login
A248017
Table T(n,k), n>=1, k>=1, read by antidiagonals: T(n,k) = number of equivalence classes of ways of placing five 1 X 1 tiles in an n X k rectangle under all symmetry operations of the rectangle.
6
0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 1, 14, 39, 14, 1, 3, 66, 208, 208, 66, 3, 12, 198, 794, 1092, 794, 198, 12, 28, 508, 2196, 3912, 3912, 2196, 508, 28, 66, 1092, 5231, 10626, 13462, 10626, 5231, 1092, 66, 126, 2156, 10808, 24648, 35787, 35787, 24648, 10808, 2156, 126
OFFSET
1,8
LINKS
Christopher Hunt Gribble, Table of n, a(n) for n = 1..9870
FORMULA
Empirically,
T(n,k) = (4*k^5*n^5 - 40*k^4*n^4 + 140*k^3*n^3 + 2*k^5 + 20*k^4*n + 30*k^3*n^2 + 30*k^2*n^3 + 20*k*n^4 + 2*n^5 - 40*k^4 - 120*k^3*n - 185*k^2*n^2 - 120*k*n^3 - 40*n^4 + 160*k^3 - 20*k^2*n - 20*k*n^2 + 160*n^3 - 80*k^2 + 36*k*n - 80*n^2 + 48*k + 48*n + 45
+ (- 30*k^2*n^3 - 20*k*n^4 - 2*n^5 - 15*k^2*n^2 + 120*k*n^3 + 40*n^4 + 20*k*n^2 - 160*n^3 + 60*k*n + 80*n^2 - 48*n - 45)*(-1)^k
+ (- 2*k^5 - 20*k^4*n - 30*k^3*n^2 + 40*k^4 + 120*k^3*n - 15*k^2*n^2 - 160*k^3 + 20*k^2*n + 80*k^2 + 60*k*n - 48*k - 45)*(-1)^n
+ (15*k^2*n^2 - 60*k*n + 45)*(-1)^k*(-1)^n)/1920;
T(1,k) = A005995(k-5) = (k-3)*(k-1)*((k-4)*(k-2)*2*k + 15*(1-(-1)^k))/480;
T(2,k) = A222715(k) = (k-2)*(k-1)*((2*k-3)(2*k-1)*2*k + 15*(1-(-1)^k))/120.
EXAMPLE
T(n,k) for 1<=n<=8 and 1<=k<=8 is:
. k 1 2 3 4 5 6 7 8 ...
n
1 0 0 0 0 1 3 12 28
2 0 0 2 14 66 198 508 1092
3 0 2 39 208 794 2196 5231 10808
4 0 14 208 1092 3912 10626 24648 50344
5 1 66 794 3912 13462 35787 81648 164980
6 3 198 2196 10626 35787 94248 212988 428076
7 12 508 5231 24648 81648 212988 477903 955856
8 28 1092 10808 50344 164980 428076 955856 1906128
MAPLE
b := proc (n::integer, k::integer)::integer;
(4*k^5*n^5 - 40*k^4*n^4 + 140*k^3*n^3 + 2*k^5 + 20*k^4*n
+ 30*k^3*n^2 + 30*k^2*n^3 + 20*k*n^4 + 2*n^5 - 40*k^4
- 120*k^3*n - 185*k^2*n^2 - 120*k*n^3 - 40*n^4 + 160*k^3
- 20*k^2*n - 20*k*n^2 + 160*n^3 - 80*k^2 + 36*k*n - 80*n^2
+ 48*k + 48*n + 45
+ (- 30*k^2*n^3 - 20*k*n^4 - 2*n^5 - 15*k^2*n^2 + 120*k*n^3
+ 40*n^4 + 20*k*n^2 - 160*n^3 + 60*k*n + 80*n^2 - 48*n
- 45)*(-1)^k
+ (- 2*k^5 - 20*k^4*n - 30*k^3*n^2 + 40*k^4 + 120*k^3*n
- 15*k^2*n^2 - 160*k^3 + 20*k^2*n + 80*k^2 + 60*k*n
- 48*k - 45)*(-1)^n
+ (15*k^2*n^2 - 60*k*n + 45)*(-1)^k*(-1)^n)/1920;
end proc;
seq(seq(b(n, k-n+1), n = 1 .. k), k = 1 .. 140);
KEYWORD
tabl,nonn
AUTHOR
EXTENSIONS
Terms corrected and extended by Christopher Hunt Gribble, Apr 16 2015
STATUS
approved