login
A248011
Table T(n,k), n>=1, k>=1, read by antidiagonals: T(n,k) = number of equivalence classes of ways of placing three 1 X 1 tiles in an n X k rectangle under all symmetry operations of the rectangle.
6
0, 0, 0, 1, 1, 1, 2, 6, 6, 2, 6, 14, 27, 14, 6, 10, 32, 60, 60, 32, 10, 19, 55, 129, 140, 129, 55, 19, 28, 94, 218, 294, 294, 218, 94, 28, 44, 140, 363, 506, 608, 506, 363, 140, 44, 60, 208, 536, 832, 1038, 1038, 832, 536, 208, 60, 85, 285, 785, 1240, 1695
OFFSET
1,7
LINKS
Christopher Hunt Gribble, Table of n, a(n) for n = 1..9870
FORMULA
Empirically,
T(n,k) = (4*k^3*n^3 - 12*k^2*n^2 + 2*k^3 + 6*k^2*n + 6*k*n^2 + 2*n^3 - 12*k^2 + 11*k*n - 12*n^2 + 4*k + 4*n - 3 - (2*k^3 + 6*k^2*n - 12*k^2 + 3*k*n + 4*k - 3)*(-1)^n - (6*k*n^2 + 2*n^3 + 3*k*n - 12*n^2 + 4*n - 3)*(-1)^k + (3*k*n - 3)*(-1)^k*(-1)^n)/96;
T(1,k) = A005993(k-3) = (k-1)*(2*(k-2)*k + 3*(1-(-1)^k))/24;
T(2,k) = A225972(k) = (k-1)*(2*k*(2*k-1) + 3*(1-(-1)^k))/12;
T(2,k) - T(1,k) = A199771(k-1) and A212561(k) = (k-1)*(6*k^2 + 3*(1-(-1)^k))/24.
EXAMPLE
T(n,k) for 1<=n<=9 and 1<=k<=9 is:
k 1 2 3 4 5 6 7 8 9 ...
n
1 0 0 1 2 6 10 19 28 44
2 0 1 6 14 32 55 94 140 208
3 1 6 27 60 129 218 363 536 785
4 2 14 60 140 294 506 832 1240 1802
5 6 32 129 294 608 1038 1695 2516 3642
6 10 55 218 506 1038 1785 2902 4324 6242
7 19 94 363 832 1695 2902 4703 6992 10075
8 28 140 536 1240 2516 4324 6992 10416 14988
9 44 208 785 1802 3642 6242 10075 14988 21544
MAPLE
b := proc (n::integer, k::integer)::integer;
(4*k^3*n^3 - 12*k^2*n^2 + 2*k^3 + 6*k^2*n + 6*k*n^2 + 2*n^3 - 12*k^2 + 11*k*n - 12*n^2 + 4*k + 4*n - 3 - (2*k^3 + 6*k^2*n - 12*k^2 + 3*k*n + 4*k - 3)*(-1)^n - (6*k*n^2 + 2*n^3 + 3*k*n - 12*n^2 + 4*n - 3)*(-1)^k + (3*k*n - 3)*(-1)^k*(-1)^n)*(1/96);
end proc;
f := seq(seq(b(n, k - n + 1), n = 1 .. k), k = 1 .. 140);
KEYWORD
tabl,nonn
AUTHOR
EXTENSIONS
Terms corrected and extended by Christopher Hunt Gribble, Apr 01 2015
STATUS
approved