login
Beatty sequence for e^(1/3): a(n) = floor(n*(e^(1/3))).
2

%I #24 Jul 16 2024 15:41:24

%S 0,1,2,4,5,6,8,9,11,12,13,15,16,18,19,20,22,23,25,26,27,29,30,32,33,

%T 34,36,37,39,40,41,43,44,46,47,48,50,51,53,54,55,57,58,60,61,62,64,65,

%U 66,68,69,71,72,73,75,76,78,79,80,82,83,85,86,87,89,90,92,93

%N Beatty sequence for e^(1/3): a(n) = floor(n*(e^(1/3))).

%C The Beatty complement is given in A248522. - _M. F. Hasler_, Oct 07 2014

%H Paolo Xausa, <a href="/A247964/b247964.txt">Table of n, a(n) for n = 0..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence</a>.

%H <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>.

%t Floor[Range[0,100]*Exp[1/3]] (* _Paolo Xausa_, Jul 16 2024 *)

%o (Java) static int a(int n) {return (int) (n*Math.pow(Math.E, (1.0/3))); }

%o (PARI) a(n)=n\exp(-1/3) \\ _M. F. Hasler_, Oct 07 2014

%Y Cf. A248522, A022843, A061402, A092041, A098005, A198268.

%K nonn

%O 0,3

%A _Sarah Nathanson_, Oct 01 2014