login
A247941
Primes p such that all of p - m^2, m = 2, 4, 6, 8, 10, are (positive) primes.
0
167, 227, 677, 1217, 5843, 13163, 15683, 15923, 24107, 122267, 148403, 148727, 157307, 186023, 198413, 227597, 229253, 313997, 338267, 344273, 360293, 372833, 451937, 464483, 469367, 517613, 525257, 541547, 603917, 732233, 742073, 991073, 1006253, 1196873, 1219847, 1328927
OFFSET
1,1
COMMENTS
All terms are congruent to (17,23) mod 30.
MAPLE
isA247941 := proc(p)
local m ;
for m from 0 to 10 by 2 do
if not isprime(p-m^2) then
return false;
end if;
end do:
return true;
end proc:
for n from 1 to 100000 do
p := ithprime(n) ;
if isA247941(p) then
printf("%d, ", p);
end if;
end do: # R. J. Mathar, Sep 28 2014
MATHEMATICA
Select[Prime[Range[25, 103000]], AllTrue[#-(2Range[5])^2, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 16 2019 *)
CROSSREFS
Cf. A046132, A246873, A246874 (supersequence).
Sequence in context: A097400 A371352 A142664 * A338343 A142329 A088291
KEYWORD
nonn
AUTHOR
Zak Seidov, Sep 27 2014
STATUS
approved