|
|
A247918
|
|
Expansion of (1 + x) / ((1 - x^4) * (1 + x^4 - x^5)) in powers of x.
|
|
3
|
|
|
1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 2, 0, -1, 2, -1, 2, 1, -2, 4, -3, 1, 4, -5, 7, -4, -2, 10, -12, 11, -1, -11, 22, -23, 13, 11, -33, 45, -35, 3, 44, -78, 81, -37, -41, 122, -158, 119, 4, -163, 281, -276, 115, 167, -443, 558, -391, -52, 611, -1000, 949
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,14
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,-1,1,-1,2,-2,2,-1).
|
|
FORMULA
|
G.f.: 1 / ((1 - x) * (1 - x + x^2) * (1 + x^2) * (1 + x - x^3)).
0 = a(n) - a(n+1) - a(n+5) + mod(floor((n-1)/2),2) for all n in Z.
a(n) = -A247907(-8-n) for all n in Z.
Convolution of A077905 and A112553.
|
|
EXAMPLE
|
G.f. = 1 + x + x^5 + x^6 + x^8 + x^11 + 2*x^13 - x^15 + 2*x^16 - x^17 + ...
|
|
MATHEMATICA
|
CoefficientList[Series[(1 + x)/((1 - x^4) (1 + x^4 - x^5)), {x, 0, 100}], x] (* Vincenzo Librandi, Sep 27 2014 *)
|
|
PROG
|
(PARI) {a(n) = if( n<0, n=-8-n; polcoeff( -1 / ((1 - x) * (1 - x + x^2) * (1 + x^2) * (1 - x^2 - x^3)) + x * O(x^n), n), polcoeff( 1 / ((1 - x) * (1 - x + x^2) * (1 + x^2) * (1 + x - x^3)) + x * O(x^n), n))};
(MAGMA) m:=60; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 + x)/((1-x^4)*(1+x^4-x^5)))); // G. C. Greubel, Aug 04 2018
|
|
CROSSREFS
|
Cf. A077905, A112553, A247907
Sequence in context: A262436 A336499 A093998 * A237203 A339444 A029389
Adjacent sequences: A247915 A247916 A247917 * A247919 A247920 A247921
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
Michael Somos, Sep 26 2014
|
|
STATUS
|
approved
|
|
|
|