OFFSET
1,1
COMMENTS
Both p and p + 2 are terms in A038878.
All terms are congruent to {1, 25, 27} mod 28.
LINKS
Zak Seidov, Table of n, a(n) for n = 1..1000
EXAMPLE
7+29*1=36=6^2 and 7+31*3=100=10^2 hence 7 is a square mod 29 and mod 31.
MATHEMATICA
Select[Prime[Range[5, 1000]], PrimeQ[# + 2] && JacobiSymbol[7, #] == JacobiSymbol[7, # + 2] == 1 &]
PROG
(PARI) lista(nn) = {forprime(p=2, nn, if (isprime(q=p+2) && issquare(Mod(7, p)) && issquare(Mod(7, q)), print1(p, ", ")); ); } \\ Michel Marcus, Sep 25 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Sep 25 2014
STATUS
approved