This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247858 Decimal expansion of the value of the continued fraction [0; 2, 5, 17, 17, 37, 41, 97, 97, ...], generated with primes of the form a^2 + b^4. 3
 4, 5, 5, 0, 2, 4, 8, 1, 6, 4, 9, 0, 1, 7, 0, 0, 2, 2, 3, 6, 9, 0, 5, 2, 8, 0, 8, 2, 7, 9, 7, 4, 4, 8, 2, 4, 1, 0, 5, 7, 5, 5, 5, 4, 8, 9, 0, 5, 0, 7, 6, 4, 4, 0, 5, 6, 8, 5, 4, 1, 8, 5, 9, 1, 5, 0, 8, 4, 6, 0, 8, 5, 0, 1, 0, 7, 1, 8, 6, 3, 1, 4, 3, 6, 3, 1, 0, 6, 6, 7, 6, 9, 7, 5, 4, 6, 0, 4, 5, 1, 9, 9, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS John Friedlander and Henryk Iwaniec, Using a parity-sensitive sieve to count prime values of a polynomial Wikipedia, Friedlander-Iwaniec theorem Marek Wolf, Continued fractions constructed from prime numbers, arxiv.org/abs/1003.4015, pp. 8-9. EXAMPLE 1/(2 + 1/(5 + 1/(17 + 1/(17 + 1/(37 + 1/(41 + 1/(97 + 1/(97 + ...)))))))) 0.45502481649017002236905280827974482410575554890507644... MATHEMATICA max = 1000; r = Reap[Do[n = a^2 + b^4; If[n <= max && PrimeQ[n], Sow[n]], {a, Sqrt[max]}, {b, max^(1/4)}]][[2, 1]]; u = Union[r, SameTest -> (False&)] ; RealDigits[FromContinuedFraction[Join[{0}, u]], 10, 103] // First CROSSREFS Cf. A028916, A243340, A247857. Sequence in context: A281385 A279270 A075464 * A247860 A196756 A103561 Adjacent sequences:  A247855 A247856 A247857 * A247859 A247860 A247861 KEYWORD nonn,cons AUTHOR Jean-François Alcover, Sep 25 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 20:12 EDT 2019. Contains 327247 sequences. (Running on oeis4.)