login
a(n) = Sum_{k=2..n} 6^k.
2

%I #27 Jan 14 2025 14:58:33

%S 0,36,252,1548,9324,55980,335916,2015532,12093228,72559404,435356460,

%T 2612138796,15672832812,94036996908,564221981484,3385331888940,

%U 20311991333676,121871948002092,731231688012588,4387390128075564,26324340768453420

%N a(n) = Sum_{k=2..n} 6^k.

%H Vincenzo Librandi, <a href="/A247840/b247840.txt">Table of n, a(n) for n = 1..200</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (7,-6).

%F G.f.: 36*x^2/((1-x)*(1-6*x)).

%F a(n) = a(n-1) + 6^n = (6^(n+1) - 36)/5 = 7*a(n-1) - 6*a(n-2).

%F a(n) = A105281(n) - 6. - _Michel Marcus_, Sep 25 2014

%F a(n) = 36 * A003464(n-1). - _Alois P. Heinz_, Jan 14 2025

%t RecurrenceTable[{a[1] == 0, a[n] == a[n-1] + 6^n}, a, {n, 30}] (* or *) CoefficientList[Series[36 x / ((1 - x) (1 - 6 x)), {x, 0, 30}], x]

%t Join[{0},Accumulate[6^Range[2,30]]] (* or *) LinearRecurrence[{7,-6},{0,36},30] (* _Harvey P. Dale_, Jun 11 2016 *)

%o (Magma) [0] cat [&+[6^k: k in [2..n]]: n in [2..30]];

%o (Magma) [(6^(n+1)-36)/5: n in [1..30]];

%o (PARI) a(n) = sum(k=2, n, 6^k); \\ _Michel Marcus_, Sep 25 2014

%Y Cf. similar sequences listed in A247817.

%Y Cf. A000400, A003464, A105281.

%K nonn,easy

%O 1,2

%A _Vincenzo Librandi_, Sep 25 2014