login
A247816
a(n) is the smallest k such that prime(k+i) = 1 (mod 6) for i = 0, 1,...,n-1.
5
4, 11, 36, 271, 271, 271, 2209, 11199, 13717, 13717, 34369, 172146, 172146, 3094795, 3094795, 4308948, 12762142, 23902561, 72084956, 72084956, 72084956, 1052779161, 1052779161, 1857276773, 1857276773, 19398320447, 57446769091, 57446769091, 57446769091
OFFSET
1,1
COMMENTS
Equivalently, "mod 6" can be replaced by "mod 3". See A247967 for the variant "= 5 (mod 6)" and A276414 for runs of primes congruent to each other (mod 3). - M. F. Hasler, Sep 02 2016
The sequence is infinite, by Shiu's theorem. - Jonathan Sondow, Jun 22 2017
LINKS
D. K. L. Shiu, Strings of Congruent Primes, J. Lond. Math. Soc. 61 (2) (2000) 359-373 [MR1760689]
FORMULA
a(n) = primepi(A057620(n)). - Michel Marcus, Sep 30 2014
EXAMPLE
a(1)= 4 => prime(4) (mod 6)= 1;
a(2)= 11 => prime(11)(mod 6)= 1, prime(12)(mod 6) = 1;
a(3)= 36 => prime(36)(mod 6)= 1, prime(37)(mod 6)= 1, prime(38)(mod 6)= 1.
The resulting primes are:
7;
31, 37;
151, 157, 163;
1741, 1747, 1753, 1759;
1741, 1747, 1753, 1759, 1777;
1741, 1747, 1753, 1759, 1777, 1783;
19471, 19477, 19483, 19489, 19501, 19507, 19531;
... - Michel Marcus, Sep 29 2014
MAPLE
for n from 1 to 22 do :
ii:=0:
for k from 3 to 10^5 while (ii=0)do :
s:=0:
for i from 0 to n-1 do:
r:=irem(ithprime(k+i), 6):
if r = 1
then
s:=s+1:
else
fi:
od:
if s=n and ii=0
then
printf ( "%d %d \n", n, k):ii:=1:
else
fi:
od:
od:
MATHEMATICA
With[{m6=If[Mod[#, 6]==1, 1, 0]&/@Prime[Range[5*10^6]]}, Flatten[Table[SequencePosition[ m6, PadRight[{}, n, 1], 1], {n, 16}], 1]][[;; , 1]] (* Harvey P. Dale, May 07 2023 *)
PROG
(PARI) m=c=i=0; forprime(p=1, , i++; p%6!=1&&(!c||!c=0)&&next; c++>m||next; print1(1+i-m=c, ", ")) \\ M. F. Hasler, Sep 02 2016
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
Michel Lagneau, Sep 28 2014
EXTENSIONS
a(12)-a(21) from A057620 by Michel Marcus, Oct 03 2014
a(22)-a(29) from Giovanni Resta, Oct 03 2018
STATUS
approved