login
A247790
Primes p such that sigma(sigma(2p-1)) is a prime.
5
2, 28669, 126961, 500461553802019261
OFFSET
1,1
COMMENTS
The next term, if it exists, must be greater than 5*10^7.
Primes p such that A247954(p) = A000203(A000203(2p-1)) = A000203(A008438(p-1)) = A051027(2p-1) is a prime q. The corresponding values of the primes q are: 7, 131071, 524287, ... (A247791). Conjecture: the primes q are Mersenne primes (A000668).
Conjecture: the next term is 500461553802019261 (see comment from Hiroaki Yamanouchi in A247821). - Jaroslav Krizek, Oct 08 2014
These are the primes in A247821. - M. F. Hasler, Oct 14 2014
No other terms up to 5*10^10. - Michel Marcus, Feb 11 2020
a(5) > 5*10^18. - Giovanni Resta, Feb 14 2020
EXAMPLE
Prime 2 is in the sequence because sigma(sigma(2*2-1)) = sigma(sigma(3)) = sigma(4) = 7, i.e., prime.
MAPLE
with(numtheory): A247790:=n->`if`(isprime(n) and isprime(sigma(sigma(2*n-1))), n, NULL): seq(A247790(n), n=1..130000); # Wesley Ivan Hurt, Oct 17 2014
PROG
(Magma) [p: p in PrimesUpTo(50000000) | IsPrime(SumOfDivisors(SumOfDivisors(2*p-1)))]
(PARI) forprime(p=1, 10^7, if(ispseudoprime(sigma(sigma(2*p-1))), print1(p, ", "))) \\ Derek Orr, Sep 29 2014
KEYWORD
nonn,more
AUTHOR
Jaroslav Krizek, Sep 28 2014
EXTENSIONS
a(4) from Giovanni Resta, Feb 14 2020
STATUS
approved