This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247765 Table of denominators in the Egyptian fraction representation of n/(n+1) by the greedy algorithm. 3
 2, 2, 6, 2, 4, 2, 4, 20, 2, 3, 2, 3, 42, 2, 3, 24, 2, 3, 18, 2, 3, 15, 2, 3, 14, 231, 2, 3, 12, 2, 3, 12, 156, 2, 3, 11, 231, 2, 3, 10, 2, 3, 10, 240, 2, 3, 10, 128, 32640, 2, 3, 9, 2, 3, 9, 342, 2, 3, 9, 180, 2, 3, 9, 126, 2, 3, 9, 99, 2, 3, 9, 83, 34362 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A100678(n) = length of n-th row; T(n, A100678(n)) = A100695(n). LINKS Reinhard Zumkeller, Rows n = 1..100 of triangle, flattened EXAMPLE .   1:  2 .   2:  2, 6 .   3:  2, 4 .   4:  2, 4, 20 .   5:  2, 3 .   6:  2, 3, 42 .   7:  2, 3, 24 .   8:  2, 3, 18 .   9:  2, 3, 15 .  10:  2, 3, 14, 231 .  11:  2, 3, 12 .  12:  2, 3, 12, 156 .  13:  2, 3, 11, 231 .  14:  2, 3, 10 .  15:  2, 3, 10, 240 .  16:  2, 3, 10, 128, 32640 .  17:  2, 3,  9 .  18:  2, 3,  9, 342 .  19:  2, 3,  9, 180 .  20:  2, 3,  9, 126 PROG (Haskell) import Data.Ratio ((%), numerator, denominator) a247765 n k = a247765_tabf !! (n-1) !! (k-1) a247765_tabf = map a247765_row [1..] a247765_row n = f (map recip [2..]) (n % (n + 1)) where    f es x | numerator x == 1 = [denominator x]           | otherwise        = g es           where g (u:us) | u <= x    = (denominator u) : f us (x - u)                          | otherwise =  g us CROSSREFS Cf. A100678, A100695. Sequence in context: A205506 A110141 A293443 * A129750 A278234 A068976 Adjacent sequences:  A247762 A247763 A247764 * A247766 A247767 A247768 KEYWORD nonn,tabf AUTHOR Reinhard Zumkeller, Sep 25 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 14:52 EDT 2019. Contains 322356 sequences. (Running on oeis4.)