login
A247711
Number T(n,k) of tilings of a 5 X n rectangle with pentominoes of any shape and exactly k pentominoes of shape X; triangle T(n,k), n>=0, read by rows.
6
1, 1, 5, 55, 1, 493, 8, 3930, 76, 27207, 734, 9, 207118, 7414, 157, 1622723, 71986, 2064, 8, 12544364, 638499, 22232, 259, 95912510, 5558790, 222964, 3898, 50, 732066083, 47971603, 2179607, 49537, 948, 8, 5616480627, 410502410, 20604626, 564498, 13889, 180
OFFSET
0,3
COMMENTS
Sum_{k>0} k * T(n,k) = A247744(n).
LINKS
Wikipedia, Pentomino
EXAMPLE
T(3,1) = 1:
._____.
| ._. |
|_| |_|
|_. ._|
| |_| |
|_____|
.
Triangle T(n,k) begins:
00 : 1;
01 : 1;
02 : 5;
03 : 55, 1;
04 : 493, 8;
05 : 3930, 76;
06 : 27207, 734, 9;
07 : 207118, 7414, 157;
08 : 1622723, 71986, 2064, 8;
09 : 12544364, 638499, 22232, 259;
10 : 95912510, 5558790, 222964, 3898, 50;
CROSSREFS
Row sums give A174249 or A233427(n,5).
Columns k=0-1 give: A247775, A247828.
Cf. A247744.
Sequence in context: A245765 A085719 A129420 * A284066 A244439 A216446
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Sep 23 2014
STATUS
approved