This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247631 Numbers k such that d(r,k) = 0 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(8)}, and { } = fractional part. 5
 8, 9, 10, 11, 14, 20, 24, 28, 37, 47, 51, 54, 57, 58, 59, 62, 63, 69, 81, 82, 85, 92, 106, 121, 128, 129, 147, 148, 149, 150, 161, 162, 165, 168, 181, 182, 183, 186, 190, 200, 201, 214, 217, 218, 219, 225, 226, 227, 228, 232, 236, 241, 245, 248, 249, 258 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Every positive integer lies in exactly one of these: A247631, A247632, A247633, A247634.  Deleting the initial 1 from the representation of r gives the representation of s. LINKS Clark Kimberling, Table of n, a(n) for n = 1..1181 EXAMPLE r has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, ... s has binary digits 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, ... so that a(1) = 8 and a(2) = 9. MATHEMATICA z = 400; r = FractionalPart[Sqrt[2]]; s = FractionalPart[Sqrt[8]]; u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]] v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]] t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}]; t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}]; t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}]; t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}]; Flatten[Position[t1, 1]]  (* A247631 *) Flatten[Position[t2, 1]]  (* A247632 *) Flatten[Position[t3, 1]]  (* A247633 *) Flatten[Position[t4, 1]]  (* A247634 *) CROSSREFS Cf. A247632, A247633, A247634, A247519. Sequence in context: A067729 A058366 A120209 * A297260 A296701 A297134 Adjacent sequences:  A247628 A247629 A247630 * A247632 A247633 A247634 KEYWORD nonn,easy,base AUTHOR Clark Kimberling, Sep 23 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 15:11 EST 2019. Contains 320374 sequences. (Running on oeis4.)