|
|
A247623
|
|
Number of paths from (0,0) to the line x = n, each segment given by a vector (1,1), (1,-1), or (2,0), not crossing the x-axis, and including no horizontal segment on the x-axis.
|
|
4
|
|
|
1, 1, 2, 4, 9, 19, 44, 96, 225, 501, 1182, 2668, 6321, 14407, 34232, 78592, 187137, 432073, 1030490, 2390004, 5707449, 13286043, 31760676, 74160672, 177435297, 415382397, 994551222, 2333445468, 5590402785, 13141557519, 31500824304, 74174404608, 177880832001
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) = sum of numbers in row n of A247622.
|
|
LINKS
|
Michael De Vlieger, Table of n, a(n) for n = 0..2617
Axel Bacher, Improving the Florentine algorithms: recovering algorithms for Motzkin and Schröder paths, arXiv:1802.06030 [cs.DS], 2018.
|
|
FORMULA
|
Conjecture: (n+1)*a(n) +(n-3)*a(n-1) +2*(-3*n+2)*a(n-2) +2*(-3*n+8)*a(n-3) +(n-5)*a(n-4) +(n-5)*a(n-5)=0. - R. J. Mathar, Sep 23 2014
|
|
EXAMPLE
|
First 9 rows of A247622:
1
0 ... 1
1 ... 0 ... 1
0 ... 3 ... 0 ... 1
3 ... 0 ... 5 ... 0 ... 1
0 ... 11 .. 0 ... 7 ... 0 ...1
11 .. 0 ... 23 .. 0 ... 9 ... 0 ... 1
0 ... 45 .. 0 ... 39 .. 0 ... 11 .. 0 ... 1
45 .. 0 ... 107 . 0 ... 59 .. 0 ... 13 .. 0 ... 1
a(5) = 0 + 11 + 0 + 7 + 0 + 1 = 19
|
|
MATHEMATICA
|
t[0, 0] = 1; t[1, 1] = 1; t[2, 0] = 1; t[2, 2] = 1; t[n_, k_] := t[n, k] = If[n >= 2 && k >= 1, t[n - 1, k - 1] + t[n - 1, k + 1] + t[n - 2, k], 0]; t[n_, 0] := t[n, 0] = t[n - 1, 1]; u = Table[t[n, k], {n, 0, 16}, {k, 0, n}];
v = Flatten[u] (* A247622 sequence *)
TableForm[u] (* A247622 array *)
Map[Total, u] (* A247623 *)
|
|
CROSSREFS
|
Cf. A247622.
Sequence in context: A026776 A117160 A339156 * A084083 A036611 A316473
Adjacent sequences: A247620 A247621 A247622 * A247624 A247625 A247626
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Clark Kimberling, Sep 21 2014
|
|
STATUS
|
approved
|
|
|
|