login
A247555
A permutation of the nonnegative numbers: a(4n) = 8n, a(4n+1) = 2n + 1, a(4n+2) = 4n + 2, a(4n+3) = 8n + 4.
1
0, 1, 2, 4, 8, 3, 6, 12, 16, 5, 10, 20, 24, 7, 14, 28, 32, 9, 18, 36, 40, 11, 22, 44, 48, 13, 26, 52, 56, 15, 30, 60, 64, 17, 34, 68, 72, 19, 38, 76, 80, 21, 42, 84, 88, 23, 46, 92, 96, 25, 50, 100, 104, 27, 54, 108, 112, 29, 58, 116, 120
OFFSET
0,3
COMMENTS
A permutation of the nonnegative integers.
FORMULA
a(n) = a(n-4) + a(n-8) - a(n-12).
a(n) = 2*a(n-4) - a(n-8). - Colin Barker, Sep 19 2014
G.f.: x*(4*x^6 + 2*x^5 + x^4 + 8*x^3 + 4*x^2 + 2*x + 1) / ((x-1)^2*(x+1)^2*(x^2+1)^2). - Colin Barker, Sep 19 2014
a(n) = (11*n-3+(n+3)*(-1)^n+(4*n-1+(-1)^n)*cos(n*Pi/2)+2*(9-3*n+4(-1)^n)* sin(n*Pi/2))/8. - Wesley Ivan Hurt, May 07 2021
MATHEMATICA
a[n_]:=Switch[Mod[n, 4], 0, 2 n, 1, (n+1)/2, 2, n, 3, 2 n-2]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Oct 09 2014 *)
LinearRecurrence[{0, 0, 0, 2, 0, 0, 0, -1}, {0, 1, 2, 4, 8, 3, 6, 12}, 50] (* G. C. Greubel, May 01 2018 *)
PROG
(PARI) Vec(x*(4*x^6+2*x^5+x^4+8*x^3+4*x^2+2*x+1)/((x-1)^2*(x+1)^2*(x^2+1)^2) + O(x^100)) \\ Colin Barker, Sep 19 2014
(Magma) &cat[[4*(i-1), i, 2*i, 4*i]: i in [1..50 by 2]]; // Bruno Berselli, Sep 19 2014
KEYWORD
nonn,easy,less
AUTHOR
Paul Curtz, Sep 19 2014
STATUS
approved