login
A247520
Numbers k such that d(r,k) = 0 and d(s,k) = 1, where d(x,k) = k-th binary digit of x, r = {golden ratio}, s = {(golden ratio)/2}, and { } = fractional part.
4
2, 8, 13, 17, 22, 26, 30, 33, 41, 43, 46, 48, 55, 61, 63, 69, 74, 79, 83, 92, 99, 103, 108, 111, 115, 118, 125, 127, 133, 138, 144, 148, 153, 156, 158, 165, 170, 172, 176, 181, 184, 187, 189, 198, 204, 207, 212, 214, 216, 221, 227, 229, 235, 242, 248, 250
OFFSET
1,1
COMMENTS
Every positive integer lies in exactly one of these: A247519, A247520, A247521, A247522.
LINKS
EXAMPLE
r has binary digits 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, ...
s has binary digits 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, ...
so that a(1) = 2.
MATHEMATICA
z = 400; r1 = GoldenRatio; r = FractionalPart[r1]; s = FractionalPart[r1/2];
u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]
v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]
t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
Flatten[Position[t1, 1]] (* A247519 *)
Flatten[Position[t2, 1]] (* A247520 *)
Flatten[Position[t3, 1]] (* A247521 *)
Flatten[Position[t4, 1]] (* A247522 *)
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Sep 19 2014
STATUS
approved