OFFSET
0,3
FORMULA
Sum_{k = 0..n} T(n, k) = A001350(n+1).
G.f.: (x^2*y + 1)/((x^4 + 2*x^3 + x^2)*y^2 + (-x^3 - 3*x^2 - 2*x)*y + x + 1). Or: (x^2*y + 1)/((x + 1)*(x*y - 1)*(x^2*y + x*y - 1)). - Vladimir Kruchinin, Oct 23 2021
EXAMPLE
[0] 1;
[1] -1, 2;
[2] 1, 0, 3;
[3] -1, 0, 2, 4;
[4] 1, 0, 0, 5, 5;
[5] -1, 0, 0, 2, 9, 6;
[6] 1, 0, 0, 0, 7, 14, 7;
.
Taylor series: 1 + x*(2*y - 1) + x^2*(3*y^2 + 1) + x^3*(4*y^3 + 2*y^2 - 1) + x^4*(5*y^4 + 5*y^3 + 1) + O(x^5).
MAPLE
T := (n, k) -> (n+1)*binomial(k-1, n-k)/(n+1-k);
for n from 0 to 11 do seq(T(n, k), k=0..n) od;
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Oct 01 2014
STATUS
approved