login
A247491
Number of crossing partitions of {1,2,...,n} that contain no singletons.
3
0, 0, 0, 0, 1, 5, 26, 126, 624, 3193, 17119, 96668, 576104, 3621982, 23980620, 166805068, 1215842905, 9263445775, 73599067250, 608471202527, 5224252803246, 46499854580107, 428369819029085, 4078345518655015, 40073659206668916, 405885206895408576, 4232705116291188276
OFFSET
0,6
COMMENTS
A partition p of the set {1,2,...,n} whose elements are arranged in their natural order, is crossing if there exist four numbers 1 <= i < k < j < l <= n such that i and j are in the same block, k and l are in the same block, but i,j and k,l belong to two different blocks.
Also the number of crossing partitions of {1,2,...,n} that contain no cyclical adjacencies. e.g., a(5) = 5, [13|24|5, 13|25|4, 14|25|3, 14|2|35, 1|24|35]. - Yuchun Ji, Nov 13 2020
LINKS
Peter Luschny, Set partitions
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(n,k)*(Bell(k)-Catalan(k)).
a(n) = A000296(n) - A005043(n).
a(n) = A016098(n) - A247494(n); i.e., remove the partitions with cyclical adjacencies from the crossing partitions. - Yuchun Ji, Nov 17 2020
EXAMPLE
The crossing partitions of {1,2,3,4,5} that contain no singletons are: [13|245], [14|235], [24,135], [25|134], [35|124].
MAPLE
A247491 := n -> (-1)^n-add((-1)^(n-k)*combinat:-bell(k), k = 0..n-1) - (-1)^n*hypergeom([-n, 1/2], [2], 4); seq(round(evalf(A247491(n), 100)), n=0..27);
MATHEMATICA
Table[Sum[(-1)^(n-k)*Binomial[n, k]*(BellB[k]-CatalanNumber[k]), {k, 0, n}], {n, 0, 26}] (* Indranil Ghosh, Mar 04 2017 *)
PROG
(Sage)
A247491 = lambda n: sum((-1)^(n-k)*binomial(n, k)*(bell_number(k) - catalan_number(k)) for k in (0..n))
[A247491(n) for n in range(27)]
(PARI)
B(n) = sum(k=0, n, stirling(n, k, 2));
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*(B(k)-binomial(2*k, k)/(k+1))); \\ Indranil Ghosh, Mar 04 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Sep 25 2014
STATUS
approved