login
A247478
Primes p such that (p^4 + 5)/6 is prime.
5
7, 11, 17, 29, 53, 71, 101, 109, 127, 179, 227, 241, 281, 307, 349, 487, 587, 647, 683, 727, 829, 1009, 1061, 1109, 1289, 1487, 1511, 1523, 1567, 1621, 1627, 1709, 1847, 1987, 2017, 2027, 2087, 2099, 2297, 2311, 2393, 2437, 2447, 2521, 2531, 2617, 2729, 2887, 2909, 2969, 3167, 3221, 3301, 3319, 3329, 3347, 3413, 3527
OFFSET
1,1
COMMENTS
(p^4+5)/6 is an integer for all primes p>3, because then p == (1 or 5) (mod 6) as in A039704, therefore p^2 == 1 (mod 6) and finally p^4 == 1 (mod 6).
EXAMPLE
(7^4+5)/6 = 401 prime, (11^4+5)/6 = 2441 prime.
MATHEMATICA
Select[Prime[Range[10^3]], PrimeQ[(#^4 + 5) / 6] &] (* Vincenzo Librandi, Jan 21 2015 *)
PROG
(PARI) lista(nn) = {forprime(p=4, nn, if (isprime((p^4 + 5)/6), print1(p, ", ")); ); } \\ Michel Marcus, Jan 20 2015
(Magma) [p: p in PrimesInInterval(3, 4000) | IsPrime((p^4+5) div 6)]; // Vincenzo Librandi, Jan 21 2015
CROSSREFS
Cf. A118915.
Sequence in context: A062574 A063912 A078725 * A174360 A320384 A019418
KEYWORD
nonn
AUTHOR
Zak Seidov, Jan 19 2015
STATUS
approved